19 research outputs found

    Continuation-Passing C: compiling threads to events through continuations

    Get PDF
    In this paper, we introduce Continuation Passing C (CPC), a programming language for concurrent systems in which native and cooperative threads are unified and presented to the programmer as a single abstraction. The CPC compiler uses a compilation technique, based on the CPS transform, that yields efficient code and an extremely lightweight representation for contexts. We provide a proof of the correctness of our compilation scheme. We show in particular that lambda-lifting, a common compilation technique for functional languages, is also correct in an imperative language like C, under some conditions enforced by the CPC compiler. The current CPC compiler is mature enough to write substantial programs such as Hekate, a highly concurrent BitTorrent seeder. Our benchmark results show that CPC is as efficient, while using significantly less space, as the most efficient thread libraries available.Comment: Higher-Order and Symbolic Computation (2012). arXiv admin note: substantial text overlap with arXiv:1202.324

    Approximation Semantics and Expressive Predicate Assignment for Object-Oriented Programming

    Get PDF
    We consider a semantics for a class-based object-oriented calculus based upon approximation; since in the context of LC such a semantics enjoys a strong correspondence with intersection type assignment systems, we also define such a system for our calculus and show that it is sound and complete. We establish the link with between type (we use the terminology predicate here) assignment and the approximation semantics by showing an approximation result, which leads to a sufficient condition for head-normalisation and termination. We show the expressivity of our predicate system by defining an encoding of Combinatory Logic (and so also LC) into our calculus. We show that this encoding preserves predicate-ability and also that our system characterises the normalising and strongly normalising terms for this encoding, demonstrating that the great analytic capabilities of these predicates can be applied to OO
    corecore